Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.
نویسندگان
چکیده
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
منابع مشابه
An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. S...
متن کاملA free energy satisfying finite difference method for Poisson-Nernst-Planck equations
Article history: Received 29 August 2013 Received in revised form 4 February 2014 Accepted 25 February 2014 Available online 13 March 2014
متن کاملNumerical solutions of the full set of the time-dependent Nernst-Planck and Poisson equations modeling electrodiffusion in a simple ion channel
The concept of electrodiffusion based on the Nernst-Planck equations for ionic fluxes coupled with the Poisson equation expressing relation between gradient of the electric field and the charge density is widely used in many areas of natural sciences and engineering. In contrast to the steady-state solutions of the Nernst-Planck-Poisson (abbreviated as NPP or PNP) equations, little is known abo...
متن کاملConvergent Finite Element Discretizations of the Navier-stokes-nernst-planck-poisson System
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin’s projection method to obtain an efficient approximation that converges to strong solutions at optimal rates. Mathematics Subject Classi...
متن کاملParallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-diffusion Equations
In this paper we present parallel adaptive finite element algorithms for solving the 3D electro-diffusion equations such as the Poisson-Nernst-Planck equations and the size-modified Poisson-Nernst-Planck equations in simulations of biomolecular systems in ionic liquid. A set of transformation methods based on the generalized Slotboom variables is used to solve the coupled equations. Calculation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2014